S16. Стационарные процессы теплопроводности

Автор – В. В. Савенко.  Дата публикации – 25.01.2020

При расчетах переноса теплоты в тепловых сетях процессы теплопроводности обычно считают стационарными. Зависимости, описывающие эти процессы, уже применялись для различных элементов сетей (расчеты потерь теплоты). В данной статье этот вопрос рассматривается настолько подробно, насколько это представляется необходимым при обучении по инженерным специальностям.

Приведено определение процесса теплопроводности, оно представляется более приемлемым по сравнению с многочисленными другими определениями, которые предлагают в различных источниках. Даны пояснения по современным представлениям о механизме переноса теплоты при теплопроводности.

Приведен анализ уравнения Фурье, которое считают основным для описания процесса и называют законом Фурье. Однако обоснованность этого уравнения вызывает сомнения, к нему имеются замечания и поправки.

Так, известно, что это уравнение предложено в начале 19 века как гипотеза. Она не противоречила известным к тому времени опытным данным, но и не являлась их научным обобщением хотя бы по той причине, что фактов для обобщения было недостаточно. Уравнение является наиболее простой зависимостью из множества возможных, которая в предложенной простой форме позволила решать практические задачи. Но эта зависимость никак не может считаться законом.

В уравнение Фурье заложена бесконечная скорость распространения теплоты. Имеется уточненное уравнение, в котором указанная скорость является конечной. Однако вклад этого уточнения незначительный, поэтому считают, что для обычных процессов теплопроводности применять уточненное уравнение нет смысла.

Дополнительно отмечено, что рассматриваемое уравнение предложено на основе теории теплорода, которая была принята во времена Фурье. Эта теория полностью отвергнута современными представлениями о переносе теплоты, но новая теория не предложила более совершенных уравнений.

Обоснованием справедливости уравнения Фурье считают многолетнюю его проверку практикой. Однако в данном случае практика ничего не доказывает. Показано, что входящий в уравнение коэффициент теплопроводности может быть определен только из этого уравнения, поэтому обратная его подстановка в то же уравнение всегда даст совпадающий с исходными данными результат.

Таким образом, уравнение Фурье является приблизительной по многим причинам зависимостью. При отсутствии других более совершенных зависимостей ее используют для практических расчетов процессов теплопроводности. Но возводить эту зависимость в ранг закона нет никаких оснований.

Показано применение уравнения Фурье для одномерных процессов теплопроводности. Приведены формулы для плотности теплового потока и изменения температуры по толщине плоских однослойной и многослойной стенок, а также цилиндрических стенок. Формулы позволяют решать широкий круг практических задач по теплопроводности. Приведены примеры решения таких задач.

………………………..Полный текст

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *